3.6.20 \(\int \frac {\sec ^3(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [520]

Optimal. Leaf size=229 \[ -\frac {(7 A-11 B+15 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(45 A-65 B+93 C) \tan (c+d x)}{15 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A-5 B+9 C) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {(15 A-35 B+39 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{30 a^2 d} \]

[Out]

-1/4*(7*A-11*B+15*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A-B+
C)*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)+1/15*(45*A-65*B+93*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2
)+1/10*(5*A-5*B+9*C)*sec(d*x+c)^2*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)-1/30*(15*A-35*B+39*C)*(a+a*sec(d*x+c))
^(1/2)*tan(d*x+c)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.46, antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4169, 4106, 4095, 4086, 3880, 209} \begin {gather*} -\frac {(7 A-11 B+15 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(15 A-35 B+39 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{30 a^2 d}-\frac {(A-B+C) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}+\frac {(5 A-5 B+9 C) \tan (c+d x) \sec ^2(c+d x)}{10 a d \sqrt {a \sec (c+d x)+a}}+\frac {(45 A-65 B+93 C) \tan (c+d x)}{15 a d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-1/2*((7*A - 11*B + 15*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[2]*a^(3/2)*
d) - ((A - B + C)*Sec[c + d*x]^3*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + ((45*A - 65*B + 93*C)*Tan[c
+ d*x])/(15*a*d*Sqrt[a + a*Sec[c + d*x]]) + ((5*A - 5*B + 9*C)*Sec[c + d*x]^2*Tan[c + d*x])/(10*a*d*Sqrt[a + a
*Sec[c + d*x]]) - ((15*A - 35*B + 39*C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(30*a^2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4095

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)),
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4106

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m
+ n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 -
 b^2, 0] && GtQ[n, 1]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sec ^3(c+d x) \left (-a (A-3 B+3 C)+\frac {1}{2} a (5 A-5 B+9 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(5 A-5 B+9 C) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\sec ^2(c+d x) \left (a^2 (5 A-5 B+9 C)-\frac {1}{4} a^2 (15 A-35 B+39 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{5 a^3}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(5 A-5 B+9 C) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {(15 A-35 B+39 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{30 a^2 d}+\frac {2 \int \frac {\sec (c+d x) \left (-\frac {1}{8} a^3 (15 A-35 B+39 C)+\frac {1}{4} a^3 (45 A-65 B+93 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{15 a^4}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(45 A-65 B+93 C) \tan (c+d x)}{15 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A-5 B+9 C) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {(15 A-35 B+39 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{30 a^2 d}-\frac {(7 A-11 B+15 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(45 A-65 B+93 C) \tan (c+d x)}{15 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A-5 B+9 C) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {(15 A-35 B+39 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{30 a^2 d}+\frac {(7 A-11 B+15 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac {(7 A-11 B+15 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(45 A-65 B+93 C) \tan (c+d x)}{15 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A-5 B+9 C) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {(15 A-35 B+39 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{30 a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 25.05, size = 7166, normalized size = 31.29 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1151\) vs. \(2(202)=404\).
time = 0.20, size = 1152, normalized size = 5.03

method result size
default \(\text {Expression too large to display}\) \(1152\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/240/d*(-1+cos(d*x+c))*(105*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))
*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*cos(d*x+c)^3*sin(d*x+c)-165*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*cos(d*x+c)^3*sin(d*x+c)+225*C*ln(-(
-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2
)*cos(d*x+c)^3*sin(d*x+c)+315*A*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+
cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-495*B*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+675*C*cos(
d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*
x+c)/(1+cos(d*x+c)))^(5/2)+315*A*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+c
os(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-495*B*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+675*C*cos(d*x
+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/
(1+cos(d*x+c)))^(5/2)+105*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*sin(d*x+c)-165*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(
d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*sin(d*x+c)+225*C*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*sin(d*x+c)+600*A*cos(d*x+c)
^4-760*B*cos(d*x+c)^4+1176*C*cos(d*x+c)^4-120*A*cos(d*x+c)^3+280*B*cos(d*x+c)^3-312*C*cos(d*x+c)^3-480*A*cos(d
*x+c)^2+640*B*cos(d*x+c)^2-960*C*cos(d*x+c)^2-160*B*cos(d*x+c)+192*C*cos(d*x+c)-96*C)*(a*(1+cos(d*x+c))/cos(d*
x+c))^(1/2)/cos(d*x+c)^2/sin(d*x+c)^3/a^2

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]
time = 3.40, size = 534, normalized size = 2.33 \begin {gather*} \left [-\frac {15 \, \sqrt {2} {\left ({\left (7 \, A - 11 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (7 \, A - 11 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (7 \, A - 11 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (75 \, A - 95 \, B + 147 \, C\right )} \cos \left (d x + c\right )^{3} + 12 \, {\left (5 \, A - 5 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (5 \, B - 3 \, C\right )} \cos \left (d x + c\right ) + 12 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{120 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}}, \frac {15 \, \sqrt {2} {\left ({\left (7 \, A - 11 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (7 \, A - 11 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (7 \, A - 11 \, B + 15 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (75 \, A - 95 \, B + 147 \, C\right )} \cos \left (d x + c\right )^{3} + 12 \, {\left (5 \, A - 5 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (5 \, B - 3 \, C\right )} \cos \left (d x + c\right ) + 12 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{60 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/120*(15*sqrt(2)*((7*A - 11*B + 15*C)*cos(d*x + c)^4 + 2*(7*A - 11*B + 15*C)*cos(d*x + c)^3 + (7*A - 11*B +
 15*C)*cos(d*x + c)^2)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*
sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((75*A -
95*B + 147*C)*cos(d*x + c)^3 + 12*(5*A - 5*B + 9*C)*cos(d*x + c)^2 + 4*(5*B - 3*C)*cos(d*x + c) + 12*C)*sqrt((
a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x
 + c)^2), 1/60*(15*sqrt(2)*((7*A - 11*B + 15*C)*cos(d*x + c)^4 + 2*(7*A - 11*B + 15*C)*cos(d*x + c)^3 + (7*A -
 11*B + 15*C)*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqr
t(a)*sin(d*x + c))) + 2*((75*A - 95*B + 147*C)*cos(d*x + c)^3 + 12*(5*A - 5*B + 9*C)*cos(d*x + c)^2 + 4*(5*B -
 3*C)*cos(d*x + c) + 12*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2
*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**3/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.82, size = 303, normalized size = 1.32 \begin {gather*} \frac {\frac {15 \, \sqrt {2} {\left (7 \, A - 11 \, B + 15 \, C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {{\left ({\left ({\left (\frac {15 \, \sqrt {2} {\left (A a^{3} - B a^{3} + C a^{3}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\sqrt {2} {\left (165 \, A a^{3} - 245 \, B a^{3} + 381 \, C a^{3}\right )}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {5 \, \sqrt {2} {\left (57 \, A a^{3} - 73 \, B a^{3} + 105 \, C a^{3}\right )}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {15 \, \sqrt {2} {\left (9 \, A a^{3} - 9 \, B a^{3} + 17 \, C a^{3}\right )}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{60 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/60*(15*sqrt(2)*(7*A - 11*B + 15*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
 a)))/(sqrt(-a)*a*sgn(cos(d*x + c))) - (((15*sqrt(2)*(A*a^3 - B*a^3 + C*a^3)*tan(1/2*d*x + 1/2*c)^2/(a^2*sgn(c
os(d*x + c))) - sqrt(2)*(165*A*a^3 - 245*B*a^3 + 381*C*a^3)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 +
5*sqrt(2)*(57*A*a^3 - 73*B*a^3 + 105*C*a^3)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 - 15*sqrt(2)*(9*A*
a^3 - 9*B*a^3 + 17*C*a^3)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt
(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________